Least Action Principle for an Integrable Shallow Water Equation

نویسندگان

  • Adrian CONSTANTIN
  • Boris KOLEV
چکیده

For an integrable shallow water equation we describe a geometrical approach showing that any two nearby fluid configurations are successive states of a unique flow minimizing the kinetic energy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variational Principle for the Generalized KdV-Burgers Equation with Fractal Derivatives for Shallow Water Waves

The unsmooth boundary will greatly affect motion morphology of a shallow water wave, and a fractal space is introduced to establish a generalized KdV-Burgers equation with fractal derivatives. The semi-inverse method is used to establish a fractal variational formulation of the problem, which provides conservation laws in an energy form in the fractal space and possible solution structures of t...

متن کامل

An integrable shallow water equation with peaked solitons.

We derive a new completely integrable dispersive shallow water equation that is biHamiltonian and thus possesses an infinite number of conservation laws in involution. The equation is obtained by using an asymptotic expansion directly in the Hamiltonian for Euler’s equations in the shallow water regime. The soliton solution for this equation has a limiting form that has a discontinuity in the f...

متن کامل

On asymptotically equivalent shallow water wave equations

The integrable 3rd-order Korteweg-de Vries (KdV) equation emerges uniquely at linear order in the asymptotic expansion for unidirectional shallow water waves. However, at quadratic order, this asymptotic expansion produces an entire family of shallow water wave equations that are asymptotically equivalent to each other, under a group of nonlinear, nonlocal, normal-form transformations introduce...

متن کامل

Complete integrable particle methods and the recurrence of initial states for a nonlinear shallow-water wave equation

We propose an algorithm for an asymptotic model of shallow-water wave dynamics in a periodic domain. The algorithm is based on the Hamiltonian structure of the equation and corresponds to a completely integrable particle lattice. In particular, “periodic particles” are introduced in the algorithm for waves travelling through the domain. Each periodic particle in this method travels along a char...

متن کامل

Wave Breaking and the Generation of Undular Bores in an Integrable Shallow Water System

The generation of an undular bore in the vicinity of a wave-breaking point is considered for the integrable Kaup–Boussinesq (KB) shallow water system. In the framework of the Whitham modulation theory, an analytic solution of the Gurevich–Pitaevskii type of problem for a generic “cubic” breaking regime is obtained using a generalized hodograph transform, and a further reduction to a linear Eule...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008